Robot Design Workshops

Week 1

SVN Setup

- Install Tortoise SVN
- tortoisesvn.net/downloads.html
- Google Form:
- https://goo.g//ifMbMM

Robotics - SVN account
Plesse enter your account info to sccess LImbrcook Robotics SVN Repository, for the robor CAD - Required

Email address *
Your email

First name *
Your answer

Last name *
Your answer

Graduation Year *
Choose -

Account user name *
Please une 'frstast' If your name is common please add your graduation yeac for example johnchen 21. Use loweccase and digts only.
Your answer

Password *

Your password will be visible to the administrater so please use a password that you dont use elienthere Vou will not ba able
letwe numbera oc symbol.
Your answer

Tips

- Close Inventor before updating
- Look through what you are committing

Subsystems

Subassemblies

Parts

Assemblies

Inventor Assemblies

Setup

- Project Files
- include
- Application Options
- Add name
- Assemblies
- TUTORIALS

Design Workshop: Sketches and Parts

1 sketch

3 Extrude

2 Dimension

4 Finish

Sketches

A 2D Drawing on a plane

- Basic plane: XY YZ and XZ
- You can create your own pl

1 Sketch

Dimension

Definition of length, angle, radius, etc

2 Dimension

Parameters

Think Algebra. When there is a variable $\mathrm{x}=3$. In Inventor, you " x " is your variable name, and " 3 " is your value. When the value is changed, it will automatically change all the "x".

Extrusion

A process that creates a 3D object from a 2D sketch
3 Extrude

Finishing Steps

 (Different for each project)Basic Finishing:

Fillets
Chamfers

4 Finish

Access Holes

Etc.

Part vs Assemble

Part: One or multiple solid body
Assemble: One or multiple part with relationship specified

Robot Design Workshops

Week 2

Subsystems

Subassemblies

Parts

Assemblies

Robot Design Workshops

Week 4

Pneumatics 101

Introduction - Units

- PSI
- Pounds per Square Inch
- Lb/(in^2)
- Questions
- A force of 3 pounds in applied uniformly on a 3 inch by 2 inch piece of sheet metal, calculate the pressure?
- A force of 10 pounds is applied to a side of a cube, measuring 0.5 square inches in area. What is the average pressure on the side of the cube?

Introduction - Formulas

- Area of Circle
- $A=\pi^{*} r^{\wedge} 2$
- Question
- What is the area of a circle with radius of
1.7841241161527711145389663725650825903942029 205719534718592738458455307795304307752598492 510731073333821940941170827299487877497849194 206859913399055524056108918749086508920785120 360690973659067421480429995879189702713812908 768046100815... inches?

Concepts (Hydraulics)

- A small force applied to a piston
- Compresses fluid in larger chamber, large force
- Example
- A powered piston pushed on fluid with 5 lb of force o a 1 in^2 area

- Creates $5 \mathrm{lb} / \mathrm{in}^{\wedge} 2$
- That "compressed" fluid pushes with 5 psi on a second piston of 3 in^2 in area
- Output of 15 lb of force
- Works the same with pneumatics

- No first pison, air compressor does that job

Pneumatic Terminology and Functionality

- Retracted Length
- Extended Length
- Stroke Length
- Bore (Diameter)

Pneumatic Force Calculation

- Practice
- Air Tanks at 60 psi, pneumatic bore of $5 / \mathrm{s}^{\prime \prime}$

Pneumatics in Design

- Pros:
- Simple Code (not that that's our concern lol :))
- Powerful yet small

■ Many differed bores/strokes available

- Can provide slow motion
- motors can be at 18000 rotations per minute, requiring complex gearboxes to slow them down to a useable speed
- Cons:
- Only 2 positions (out and in)
- Limited Motion
- Require compressor and other heavy pneumatic components

Pneumatic Damping

- When extending have full bore to push against
- When retracting have full bore - area of piston rod
- $\sim 10 \%$ less force when retracting
- Practice:
- 60 psi air tank, $3 / 4$ " bore, $1 / 4$ " diameter piston Rod
- Calculate \% of damping.

