Software Workshops

Week 1 - 10/11/19

What do we do?

- Code in Kotlin
- Sensors
- Controlling motors and pneumatics
- Control theory
- Computer vision
- Microcontrollers

What will you learn?

- Kotlin
- Various tools
- IntelliJ, Git, Gradle, Command line
- Electronics
- Sensors, motor controllers, PWM
- Programming concepts
- Real-time Control
- Object oriented programming, Functional programming
- JVM
- Control Theory

https://tinyurl.com/846software

Start Kotlin tutorials when all setup

Link to tutorial at the bottom of the setup document

Consistent periodic updates
Our robot is an example of "real-time" software

Hardware Output

Sensor Input

- Mechanical
- Limit switch, hall effect, potentiometer, encoders, gyro
- Driver Input
- Joystick, Xbox controller, steering wheel
- Camera
- Limelight
- Vision system

Calculations

- Control Theory
- What do we output to accomplish a goal?

Hardware Output

- Motors
- Pneumatics
- LEDs

Kotlin!

If you have a background in...

- Java: https://tinyurl.com/javakotlin
- Python: https://tinyurl.com/pythonkotlin

Control Challenges

- janismac.github.io/ControlChallenges/

Homework

- https://learngitbranching.js.org
- Finish the first 4 levels
https://tinyurl.com/846softwaresurvey

Software Workshops

Week 2 - 10/18/19

Consistent periodic updates
Our robot is an example of "real-time" software

Hardware Output

Basic Algorithm

If the speed is too slow...
More power
If the speed is too fast...
Slow down

Basic Algorithm

If the block is too far left...
Move right
If the block is too far right...
Move left
janismac.github.io/ControlChallenges/

Control Theory

- At least 1 input and output
- Open loop
- Output calculated using just input
- Closed loop
- Use feedback
- Measure the "error" of the output and correct it

Bang Bang Control

- 2 States
- Most simple algorithm for control
- No tuning
- Examples
- Thermostat
- Pump
janismac.github.io/ControlChallenges/

Proportional Control

- Feedback system
- Error is how far off your block is
- Error = (what you want) - (what you have)
- Output is proportional to this error
janismac.github.io/ControlChallenges/

Proportional + Derivative Control

- Simulating friction
- When the block is going too fast when its approaching the target, we slow it down
janismac.github.io/ControlChallenges/

Feed Forward

- Sustain a target
- Feed forward is based on prior knowledge, not error

Bang Bang

Proportional + Derivative

- Easy to code
- Fast startup
- Harder to tune (multiple constants)
- Systems with only ON/OFF state
- Prevents too much oscillation

Software Workshops

Week 3-11/1/19

Checklist!

- IntelliJ
- OpenJDK - https://adoptopenjdk.net
- JDK 11
- Hotspot
- Check by running "java -version"

```
-> control-workshops-19 git:(week-3) java -version
openjdk version "11.0.4" 2019-07-16
OpenJDK Runtime Environment AdoptOpenJDK (build 11.0.4+11)
OpenJDK 64-Bit Server VM AdoptOpenJDK (build 11.0.4+11, mixed mode)
-> control-workshops-19 git:(week-3) 
```


https://tinyurl.com/846week

3

Software Workshops

Week 4-11/8/19

Checklist!

- Install IntelliJ community
- OpenJDK - https://adoptopenjdk.net
- JDK 11
- Hotspot
- Check by running "java -version"
- Use label maker by the teachers desk to put your name on your charger!

```
-> control-workshops-19 git:(week-3) java -version
openjdk version "11.0.4" 2019-07-16
OpenJDK Runtime Environment AdoptOpenJDK (build 11.0.4+11)
OpenJDK 64-Bit Server VM AdoptOpenJDK (build 11.0.4+11, mixed mod
```


https://tinyurl.com/846wk4

- Windows:
- Open file explorer and find the downloaded .zip file
- Click "Extract All" on the top bar
- Open IntelliJ
- Click "Open"
- Find the control-workshops-19 folder you just downloaded
- Click "Import Gradle Project" on the bottom right popup
- If you don't see this, you may have opened the wrong folder

Challenge \#1

- Make a function that moves the lift to a certain position
- Parameters: the target position to go to (Length)
- Use proportional control only
- Find base code in Routines.kt
- Your kP (proportional gain) should be in Percent / Length
- E.g. 50.Percent / 3.Inch
- Uncomment line 24 in FunkyRobot.kt
http://janismac.github.io/ControlChallenges/

Challenge \#2

- Modify challenge \#1
- Make the routine exit once the lift is close enough to the target
- To make a routine finish, return null from the controller
- Parameters: the target position to go to (Length), the tolerance (Length)

Challenge \#3

- Modify challenge \#2
- Add derivative control!

- Each subsystem runs this on a very fast loop

Hardware Output

Routines

- Write the calculations for the fast loop
- Sensor input —> Calculation —> Hardware Output (only to 1 subsystem!!)

Choreographies

- Coordinate different subsystems (routines) together
- Run routines sequentially or concurrently

Challenge \#4

- Picking up a hatch panel
- Base code in Choreographies.kt
- Comment line 24 in FunkyRobot.kt to disable challenge 1/2/3
- Uncomment lines 27-34 in FunkyRobot.kt
- Hint: quickly comment/uncomment multiple lines
- Highlight the lines you want to comment
- Mac: command + /
- Windows: control + /

Software Workshops

Week 5-11/15/19

What is PWM?

PWM (Pulse Width Modulation)

- Control power output
- 0-100\% by switching on/off very quickly

50\% Duty Cycle

75\% Duty Cycle

What is the CAN bus?

CAN (Controller Area Network)

- Communicate between different devices

- Speed controllers, pneumatics, roboRIO
- Send packets of data
- Chain multiple devices together

