
Software Workshops
Week 1 - 10/11/19



What do we do?
- Code in Kotlin
- Sensors
- Controlling motors and pneumatics
- Control theory
- Computer vision
- Microcontrollers



What will you learn?
- Kotlin
- Various tools

- IntelliJ, Git, Gradle, Command line

- Electronics
- Sensors, motor controllers, PWM

- Programming concepts
- Real-time Control
- Object oriented programming, Functional programming
- JVM

- Control Theory



https://tinyurl.com/846software

Start Kotlin tutorials when all setup
Link to tutorial at the bottom of the setup document



Sensor Input

Calculations Hardware 
Output

Consistent periodic updates

Our robot is an example of 
"real-time" software



Sensor Input
● Mechanical

○ Limit switch, hall effect, potentiometer, encoders, gyro

● Driver Input
○ Joystick, Xbox controller, steering wheel

● Camera
○ Limelight
○ Vision system



Calculations
● Control Theory

○ What do we output to 
accomplish a goal?



Hardware Output
● Motors
● Pneumatics
● LEDs



Kotlin!
If you have a background in…

● Java: https://tinyurl.com/javakotlin
● Python: https://tinyurl.com/pythonkotlin

https://tinyurl.com/javakotlin
https://tinyurl.com/pythonkotlin


Control Challenges

● janismac.github.io/ControlChallenges/

http://janismac.github.io/ControlChallenges/


Homework

● https://learngitbranching.js.org
○ Finish the first 4 levels

https://learngitbranching.js.org


https://tinyurl.com/846softwaresurvey



Software Workshops
Week 2 - 10/18/19



Sensor Input

Calculations Hardware 
Output

Consistent periodic updates

Our robot is an example of 
"real-time" software



M
ot

or
 S

pe
ed

100%

Time



M
ot

or
 S

pe
ed

100%

Time

50%



Basic Algorithm
If the speed is too slow…

More power

If the speed is too fast…

Slow down



Basic Algorithm
If the block is too far left...

Move right

If the block is too far right...

Move left



janismac.github.io/ControlChallenges/



Control Theory
● At least 1 input and output
● Open loop

○ Output calculated using just input

● Closed loop
○ Use feedback
○ Measure the "error" of the output and correct it



Bang Bang Control
● 2 States
● Most simple algorithm for control
● No tuning
● Examples

○ Thermostat
○ Pump



janismac.github.io/ControlChallenges/



● Feedback system
● Error is how far off your block is

○ Error = (what you want) - (what you have)

● Output is proportional to this error

Proportional Control



janismac.github.io/ControlChallenges/



Proportional + Derivative Control
● Simulating friction
● When the block is going too fast when its approaching the target, we slow it 

down



janismac.github.io/ControlChallenges/



Feed Forward
● Sustain a target
● Feed forward is based on prior knowledge, not error



Bang Bang Proportional + Derivative
● Easy to code
● Fast startup
● Systems with only ON/OFF state

● Harder to tune (multiple constants)
● Prevents too much oscillation



Software Workshops
Week 3 - 11/1/19



Checklist!
● IntelliJ
● OpenJDK - https://adoptopenjdk.net

○ JDK 11
○ Hotspot
○ Check by running "java -version"

https://adoptopenjdk.net


https://tinyurl.com/846week
3



Software Workshops
Week 4 - 11/8/19



Checklist!
● Install IntelliJ community
● OpenJDK - https://adoptopenjdk.net

○ JDK 11
○ Hotspot
○ Check by running "java -version"

● Use label maker by the teachers desk to put your name on your charger!

https://adoptopenjdk.net


https://tinyurl.com/846wk4
● Windows:

○ Open file explorer and find the downloaded .zip file
○ Click "Extract All" on the top bar

● Open IntelliJ
○ Click "Open"
○ Find the control-workshops-19 folder you just downloaded
○ Click "Import Gradle Project" on the bottom right popup

■ If you don't see this, you may have opened the wrong folder



Challenge #1
● Make a function that moves the lift to a certain position
● Parameters: the target position to go to (Length)
● Use proportional control only
● Find base code in Routines.kt
● Your kP (proportional gain) should be in Percent / Length

○ E.g. 50.Percent / 3.Inch

● Uncomment line 24 in FunkyRobot.kt

http://janismac.github.io/ControlChallenges/



Challenge #2
● Modify challenge #1
● Make the routine exit once the lift is close enough to the target
● To make a routine finish, return null from the controller
● Parameters: the target position to go to (Length), the tolerance (Length)



Challenge #3
● Modify challenge #2
● Add derivative control!



Sensor Input

Calculations Hardware 
Output

● Each subsystem runs this on a 
very fast loop



Choreographies
(runs on slower EventLoop)

Lift Drivetrain



Routines
● Write the calculations for the fast loop
● Sensor input —> Calculation —> Hardware Output (only to 1 subsystem!!)



Choreographies
● Coordinate different subsystems (routines) together
● Run routines sequentially or concurrently



● Picking up a hatch panel
● Base code in Choreographies.kt

● Comment line 24 in FunkyRobot.kt to disable challenge 1/2/3
● Uncomment lines 27-34 in FunkyRobot.kt

● Hint: quickly comment/uncomment multiple lines
○ Highlight the lines you want to comment

■ Mac: command + /
■ Windows: control + /

Challenge #4



When the trigger is pressed/held When the trigger is released

https://docs.google.com/file/d/1Dqc_LIRnAyOwZxO1DmV3oYPNLo6IUJup/preview
https://docs.google.com/file/d/1Z0AJhbVKhGPoKKyOcMFZ-gijXybq8xN0/preview


Software Workshops
Week 5 - 11/15/19



What is PWM?



PWM (Pulse Width Modulation)
● Control power output
● 0-100% by switching 

on/off very quickly



What is the CAN bus?



CAN (Controller Area Network)
● Communicate between different devices

○ Speed controllers, pneumatics, roboRIO

● Send packets of data
● Chain multiple devices together


